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Introduction:

In the current century, the complex history of musical tuning in the West is largely
ignored by many musicians and composers. After all, the nearly universally adopted system of
12-tone equal temperament is highly functional, abundantly convenient, and has been widely
used since the 19th century. However, the almost exclusive use of 12-tone equal temperament in
Western music has caused many to forget the unique musical possibilities offered by other
systems of tuning. The history of musical tuning is rich and complex, and its impact on music
composition is extremely significant. In fact, the development of new tuning systems often
inspired composers to write new music; conversely, it is also true that the evolution of the tonal
harmonic system has necessitated the invention of new tuning systems. Hence, the influence of
tuning on the progression of musical history is akin to that of technology: a behind-the-scenes
factor linked to many more developments than commonly known. In this essay, I will explore the
evolution of tuning in Western music, and how the specific characteristics of various tunings
have influenced music composition.

Part 1: The Harmonic Series and Just Intonation:

The harmonic series is a series of overtones with frequencies corresponding to integer
multiples of a fundamental frequency. Whenever a note is played on an instrument, the overtones
of that note, though very difficult to hear, will be audible, and will influence the timbre of the
sound. For instance, if a pianist plays the note C, this note acts as the fundamental and first
partial of a harmonic series. The second partial, or first overtone, is the note C one octave above
the fundamental, the third partial is the note G a twelfth above the fundamental, and the fourth
and fifth partials correspond to C and E respectively. The harmonic series continues upward
indefinitely; however, only the first few partials are audible to human ears.

First 16 Partials of the Harmonic Series (the bracketed notes are significantly out of tune from equal temperament)
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Fig. 1.1: Diagram of the Harmonic Series.

The importance of the harmonic series to music, besides its relation to timbre and chord
voicing, is that it can be used to derive musical intervals. The frequency relationship between the
fundamental or first partial and the first harmonic or second partial is 2:1. This 2:1 ratio
represents the interval of an octave. The perfect fifth is derived from the 3:2 relationship between



the third partial and the second partial, while the major third is derived from the 5:4 relationship
between the fifth and fourth partials. The frequency ratios of these intervals are based on simple
whole number ratios, and therefore have a simple, consonant sound. Because of their consonant
sound, they have been used to construct a system of tuning called 5-limit just intonation.

The name 5-limit just intonation signifies that the frequencies of all twelve notes of the
chromatic scale are obtained from a fundamental frequency by using some combination of the
intervals of an octave, a perfect fifth, and a major third. For example, in a system with C as the
fundamental frequency, the note F# can be obtained by going up two perfect fifths, and one
major third (C to G, G to D, and then D to F#). The note Eb can be obtained by going down one
major third, and then up one perfect fifth (C to Ab, Ab to Eb). As the 5:4 ratio of the major third
is the most complex ratio used to derive other frequencies, and that ratio is based on the prime
number five, the prefix 5-limit is added. The term just intonation describes any musical tuning
system that uses whole number ratios to represent intervals; therefore, 5-limit tuning is a type of
intonation tuning; however, just intonation systems based on more complex ratios, such as
7-limit tuning and 11-limit tuning, are also possible.
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Fig. 1.2: Diagram Showing Derivation of Notes in 5-Limit Tuning, (horizontal arrows
represent derivation by upward or downward perfect fifth, vertical arrows represent
derivation by upward or downward major third).

Because of the fact that many of the intervals contained within just intonation systems
have a very natural and consonant sound, many cultures around the world have used just
intonation in their music. Accordingly, the first tuning systems used in the West were just
intonation systems. For example, the first system of tuning known to have been theorized in the
West was Pythagorean tuning, a system supposedly developed by Pythagoras during the 6th
century BCE. This system of tuning could also be described as 3-limit just intonation. Later on,
during the 2nd century CE, Roman mathematician Claudius Ptolemy developed a system of just
intonation that closely resembled 5-limit tuning.



While it is true that the sound of just intonation is often described as “pure”, and that
many of the chords and intervals it forms are endowed with an unparalleled quality of resonance;
there are numerous practical difficulties associated with the use of just intonation. One of these
difficulties is the phenomenon of “comma-pump”, an effect in which the pitch of a musical
sequence rises each time it is repeated. This is due to the fact that the precise application of
tuning math in certain sequences can cause the frequency of the fundamental pitch to increase by
a small, but nevertheless significant amount. This discrepancy between two slightly different
versions of the fundamental pitch is called a comma. Additionally, while just intonation systems
are built on pure intervals, they also inevitably tend to contain a few intervals that are
aggressively out of tune. These intervals are nicknamed “wolf intervals”, and they are almost
completely unusable in the majority of musical contexts. Wolf intervals can be avoided, but this
comes at the cost of musical creativity, as composers have to avoid writing music in certain keys
in order to not feature such intervals.
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Fig. 1.3: Diagram Showing “Comma-Pump”, (the “+” accidentals indicate the gradual rising
of the pitch).



Part 2: Pythagorean Tuning:

Pythagorean tuning is a system of tuning, the development of which has been widely
attributed to the Ancient Greek philosopher of the 6th century BCE, Pythagoras of Samos.
However, some musicologists claim that the system was actually first developed by the Ancient
Mesopotamians. According to legend, Pythagoras was walking past a forge when he heard the
sound of several different hammers striking anvils simultaneously. Pythagoras noticed that the
sound produced by the hammers was pleasing and consonant, and therefore decided to
investigate why. He soon determined that the ratios obtained by comparing the weights of each
of the hammers were simple integer ratios, such as 2:1 and 3:2, and then decided that these ratios
were the key to beautiful music. Pythagoras believed that if the frequencies of musical pitches
formed the same simple mathematical ratios that existed between the hammers, the result would
be music that sounded harmonious, pleasing, and divine. This belief was consistent with the
Pythagorean belief that the entirety of the universe was governed by mathematics and that
numbers were divine and could be used to explain beauty.

Feeling inspired by his discovery, Pythagoras created a system of tuning that made use of
mathematical ratios, and the result was Pythagorean tuning. Pythagorean tuning uses the 3:2 ratio
of the pure perfect fifth as a way of deriving all the notes of the chromatic scale from a
fundamental frequency. If the fundamental frequency used is the note C, the note G can be
obtained by multiplying the frequency of C by 3:2. The note D can be obtained from G by doing
the same multiplication, as can A from D, E from A, etc. This pattern continues until the note C
is reached again at the end of the circle of fifths. The pitches attained by these multiplications
can be shifted by octave by multiplying or dividing them by 2:1 (the ratio of an octave), and this
can be done such that a one octave twelve-note chromatic scale is formed. Because the 3:2 ratio
of a pure perfect fifth was used to derive all the notes of the scale, perfect fifths played in any
key will have the same quality of beautiful resonance associated with the pure perfect fifth.
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Fig. 2.1: Diagram Showing the Pythagorean Derivation of the Chromatic Scale
Represented with the Circle of Fifths.



It seemed that Pythagoras had succeeded in creating a system of tuning that would allow
for beautiful music in all twelve keys; however, this was not the case, because not all the perfect
fifths in his chromatic scale were actually pure fifths. If a pianist were to play 12 consecutive
ascending fifths on a piano tuned to 12 tone equal temperament, they would eventually arrive at
a note exactly seven octaves above the note they started at. Conversely, going up seven fifths
using the Pythagorean ratio of 3:2 would lead one to arrive at a note that is not exactly seven
octaves above the note where they started, but that is actually 23 cents sharper (cents is a unit
used for measuring pitch; one cent is equal to 1/100th of an equal-tempered semitone). Thus, it is
impossible to have entirely pure fifths in a tuning system, because pure octaves would have to be
sacrificed. Fundamentally, 7 octaves does not equal 12 fifths, and in the case of Pythagoras, this
fact gives rise to something called the Pythagorean comma. This is an interval that can be
defined as the difference between 7 octaves and 12 fifths where pure ratios are in use, and this
translates to a gap of approximately 23 cents, or nearly a quarter of a semitone.
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Beaulieu, John. Image from “The Perfect Fifth: The Science and Alchemy of Sound”. The Rose+Croix Journal
Vol.11, https://www.rosecroixjournal.org/

Fig: 2.2: Diagram Showing the Chain of Fifths That Leads to the Pythagorean Comma.

The other implication of not being able to have entirely pure fifths in a tuning system is
obvious: at least one of the fifths must be a different size. In Pythagorean tuning, the last fifth in
the chain of 12, or F to C in a system where C is the fundamental tone, is made smaller by one
Pythagorean comma, giving it a ratio of 262144:177147. As opposed to the simple 3:2 ratio of a
just perfect fifth, this ratio is monstrously complex, and therefore produces an interval that
sounds very dissonant. Because of its dissonance, this interval has been given the name “wolf
interval”, as the two notes are in such discord that they seem to howl at each other like wolves.
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The existence of this wolf interval was very problematic, because its dissonance made it
essentially unusable in music. All that could be done was to move the interval to a place where it
likely wouldn’t be used often, such as between G# and EDb (the spelling is key to the derivation),
and this was done by changing the derivation of some of the notes of Pythaogorean tuning such
that some notes were reached by downward fifths instead of upward fifths. Although this did
represent a partial solution to the problem of the wolf fifth, it also meant that certain keys
couldn’t be used for making music.

Besides the wolf fifth, Pythagorean tuning also presented other problems. Ordinarily,
major thirds have the ratio of 5:4; however, in Pythagorean tuning most of the major thirds have
a ratio of 81:64. This results in major thirds that are approximately 22 cents sharper than pure
thirds, and therefore sound quite out of tune. The ramifications of this on music making were
very significant. In the Middle Ages, thirds and sixths were considered dissonant intervals in part
because Pythagorean tuning made them so. This in turn influenced music composition, because it
meant that only octaves, fifths, and fourths could be used in harmony. Consequently, one can
clearly observe the prevalence of using only octaves, fifths, or fourths to harmonize melodic
lines in the middle ages. Eventually, new tuning systems were developed that fixed the problem
of dissonant thirds and sixths, making possible the development of a new style of composition
where these intervals could be used in harmony; however, Pythaogrean tuning was used by
musicians up until the beginning of the 16th century, and therefore holds a sort of record as one
of the longest used tuning systems in Western music.

Ave maris stella

Perotin [Perotinus Magnus]

(fl.Paris, ca. 1200)
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Fig. 2.3: Opening bars of “Ave Maris Stella”, by the medieval composer Perotin, (note
the prevalence of octaves, fifths, and fourths in the harmony).



Part 3: Tempered Tuning Systems:

Tempered tuning systems are those tuning systems in which the sizes of certain intervals
have been altered in order to respond to some of the practical problems associated with using just
intonation. In the West, many of the first tempered tuning systems to be invented were systems
that sought to rectify the impurity of thirds and sixths in Pythagorean tuning. This development
was mostly brought about by the evolution of the harmonic style of Western music, which saw
the introduction of the triad, to which harmony in thirds and sixths is essential. Therefore, the
inventors of the earliest tempered tuning systems abandoned the Pythagorean goal of having as
many pure fifths as possible, and replaced it with the goal of having as many pure thirds and
sixths as possible. Hence, the pure fifths had to be tempered, meaning that their size had to be
altered by a certain amount. The tuning systems that were designed to accomplish this goal are
known today as meantone temperaments, and while many different meantone temperament
systems were invented, the most popular was quarter-comma meantone.

Quarter-comma meantone temperament was first described by Italian music theorist
Pietro Aron in his 1523 book, Toscanella de la Musica, and the system is so named because it
uses a pure perfect fifth that has been flattened by one quarter of a syntonic comma. This slightly
narrower version of a perfect fifth no longer has a ratio of 3:2, and can actually be described by

the value \4/5, which is approximately equivalent to 697 cents, while the 3:2 fifth corresponds to
approximately 702 cents. As with Pythagorean tuning, one can derive all the notes of
quarter-comma meantone temperament by multiplying a fundamental frequency by the value that
is used for a fifth. In this instance, to go up by 12 fifths (thereby getting a value for each note of

the chromatic scale), one would have to raise \4/§ to the power of 12.

However, as with Pythagorean tuning, this value is not equal to going up by seven
octaves. In fact, it falls short by approximately 41 cents, meaning that the last fifth in the chain
will be a wolf fifth that is 41 cents sharper than all the other fifths in the system. Thus,
quarter-comma meantone temperament faces the same problem that plagues Pythagorean tuning.
However, it still represents an improvement upon Pythagorean tuning, as the system features
eight pure major thirds with a ratio of 5:4, while Pythagorean tuning features no pure major
thirds. Because of this, quarter-comma meantone temperament can be used to construct triads
that don’t sound horribly out of tune, making it suitable for performing triad-based tonal music.
The system does still have limitations, as only a few keys have usable triads, but as long as music
played using quarter-comma meantone temperament is written in a favorable key, and doesn’t
modulate to any unfavorable keys, it will sound sufficiently pleasant and consonant.



Number of Width (in cents) of intervals starting from...

semitones| D Eb E F F# G Gz A Bb B C Cz

Unison 0 ] ] ] ] ] ] ] ] ] ] ] ]
Minor second 1 My P de | 17 e | 117 | f6 | 117 117 | #6 117 | #6117
Major second 2 193 193 193 193 193 193 234 193 193 193 193 234
Minor third 3 310 269 310 269 310 30 30O 30 269 310 30 310
Major third 4 386 3B6 386 3B6 427 386 427 386 386 427 386 427
Perfect fourth 5 503 462 503 503 503 503 503 503 503 503 503 503
Augmented fourth B 579 579  B21 4579  B21 579  B21 B21 579 621 579 | 621
Perfect fifth T B97 697 697 697 697 69T 738 BYT 6I7T 697 BIT 697
Minor sixth B 814 773 814 773 814 814 814 814 773 814 773 814
Major sixth 9 890 890 890 890 931 890 931 890 890 890 890 @ 931
Minor seventh 10 1007 966 1007 1007 1007 1007 1007 1007 8966 1007 1007 1007
Major seventh 11 1083 1083 1124 1083 1124 1083 1124 1083 1083 1124 1083 1124
Octave 12 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

Paolo.dL, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Fig. 3.1: Diagram Showing the Width of Intervals in Quarter-Comma Meantone, (the values
highlighted in gray are significantly out of tune).
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Orgelcompositionen, Band I, No.2 (pp.6). 1903). Public Domain.

Fig. 3.2: Excerpt from Buxtehude’s “Ciacona in C Minor: BuxWV 159, an organ
composition of the mid-Baroque era, (note the prevalence of harmony by thirds).

Though quarter-comma meantone temperament and other types of meantone
temperament were popular throughout much of the late Renaissance and Baroque eras, the
limitations of these tuning systems were still apparent to musicians. These limitations began to
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pose a more significant problem as the tonal harmonic system further developed, since
composers wanted to write music in more than just a few keys, and wanted to have the liberty to
modulate to any key they desired. As a result of this, the music theoreticians and mathematicians
of the 17th and 18th centuries worked to develop new tuning systems that would allow for
greater musical freedom. The result of their labors was the invention of a new type of tempered
tuning called well temperament. The term well temperament doesn’t refer to a specific tuning
system, but to any tuning system in which the 12 notes of the chromatic scale are tuned such that
music can be played in all major and minor keys without sounding very out of tune.

Though there are many tuning systems that can be classified as well temperament, one of
the most popular today is Werckmeister III, a system invented by German music theorist and
composer, Andreas Werckmeister, and first described in his 1691 book, Musikalische
Temperatur. Unlike Pythagorean tuning and quarter-comma meantone temperament, which both
have 11 fifths of the same size and one highly dissonant wolf fifth, Werckmeister III has four
tempered fifths and eight pure fifths. In a system with C as the fundamental frequency, the four
tempered fifths are C to G, G to D, D to A, and B to F#, and they have each been tempered by
one quarter of a Pythagorean comma (the interval that represents the difference between a stack
of 12 pure fifths, and a stack of 7 octaves). The rest of the fifths in Werckmeister III are pure.

Note | C C# |D Eb |E F F# G Ab [A Bb B

Cents | 0 90 192 1294 |390 |498 |[588 [696 |792 |888 [996 |1092

Fig. 3.3: Table Showing Values for Werckmeister I1I in Cents, (note how close many of the
values are to equal temperament).

In essence, Werckmeister III and other well temperament systems responded to the
problem of many keys being unusable in meantone temperament by making small calculated
sacrifices to the purity of multiple intervals. Because these sacrifices were small, and because
they were made fairly evenly throughout the chromatic scale, none of the 24 major and minor
keys sound significantly out of tune. Additionally, most well tempered tuning systems still
preserved many pure intervals. As a result of these characteristics, well temperament not only
made music possible in all major and minor keys, but it also afforded a slightly different
character and color to each key, as the sizes of certain intervals varied slightly in each key.

For musicians and composers, well temperament represented a practical and liberating
solution to the problem of tuning, and many musicians and composers would exploit the
possibilities of the system to write music that would not have been possible with earlier tuning
systems. One very notable example is Johann Sebastain Bach’s two sets of preludes and fugues
in all 24 major and minor keys, titled The Well-Tempered Clavier. Although there is debate
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concerning exactly what tuning system Bach wanted performers to use for The Well-Tempered
Clavier, most musicologists agree that it was some kind of well-tempered tuning system, with
some even arguing for a system very similar to Werckmeister III. The invention of well tempered
tuning inspired developments in the tonal harmonic system, as it allowed composers to
experiment with increased chromaticism in their music, while also making possible more
unusual modulations. Though well temperament would eventually be replaced by equal
temperament, it remains an important step in the evolution of tuning.
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Fig. 3.4: An Excerpt from Bach’s “Prelude and Fugue in Bb minor: BWV 891", a
late-Baroque keyboard work, (note the greater use of non-diatonic tones, and the key signature
of Bb minor, a key whose practical use was enabled by well temperament).

Part 4: 12-Tone Equal Temperament:

12-tone equal temperament is a musical tuning system in which the octave is divided into
12 equally spaced parts. Though 12-tone equal temperament was not calculated with
mathematical exactitude until 1584 by Chinese mathematician and music theorist Zhu Zaiyu, it
had been theorized and discussed much earlier, by many different historical figures, such as
Greek philosopher Aristoxenus, and Italian astronomer Galileo. In the West, equal temperament
was first calculated exactly by Flemish mathematician Simon Stevin in 1585; however, at that
point, it had already been in use in fretted instruments such as the lute, which wasn’t particularly
suited to any other tuning system.



12

T TG

&

a3

i (

16th century scientist Zhu Zaiyu, Public domain, via Wikimedia Commons

Fig. 4.1: An Image of Zhu Zaiyu’s Manuscript Showing his Calculation of 12-Tone
Equal Temperament.

Despite this, equal temperament was not widely adopted in the musical community until
the late 18th century. This is because many music theorists were opposed to equal temperament,
claiming that it ruined the purity of all intervals, and therefore made music sound significantly
out of tune. There is some truth to this, as equal temperament represents a sort of ultimate
compromise in tuning, sacrificing the purity of all intervals but the octave for unrestricted
harmonic freedom. Notwithstanding this resistance, in the latter half of the 18th century, equal
temperament began to gain popularity, not simply because its supporters desired harmonic
freedom, but also because the simplicity of its design made it convenient to implement. By the
early Romantic Era, the use of equal temperament became standard in most musical
communities, and its predominance was aided by the fact that instruments using equal
temperament, such as the piano, could now be mass produced, and therefore made available to
many musicians of different social classes.

Compared to other tuning systems, 12-tone equal temperament is much simpler to
construct. In 12-tone equal temperament, all semitones are exactly the same size, and can

therefore all be represented with the value 1\2/5, which is an exact mathematical description of the
division of the octave (which has a ratio of 2:1, or just 2) into an interval one twelfth of its size.
Since all semitones are the same size in equal temperament, all fifths and thirds, and all other
intervals are also the same size, regardless of where one is in the chromatic scale. There are both
advantages and disadvantages that result from tuning instruments in this manner. First, it makes
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possible the transposition of any piece of music into any key, while also allowing composers to
make use of whatever modulations they want in their music. Equal temperament also allowed for
the development of more complex harmonic structures, such as those found in jazz, and in
classical music of the 20th and 21st centuries. In particular, harmonic approaches such as
polytonality, modal harmony, secundal harmony, non-functional harmony, and freely atonal
harmony simply wouldn’t have been possible without equal temperament. Equal temperament is
also essential to 12-tone serialism, a compositional technique invented by Arnold Schoenberg
which seeks to achieve compositional equality between all 12 tones of the chromatic scale.
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Schoenberg, Arnold CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Fig. 4.2: An Excerpt from Schoenberg’s “Three Piano Pieces No.1: Op.11”, a 20th century
piano work, (note the use of 10 out of 12 notes of the chromatic scale, a level of chromaticism

facilitated by equal temperament).

Despite the many advantages of equal temperament, not everyone views it favorably.
Some people believe that equal temperament sounds cold, sterile, and mechanical, while others
argue that many of its intervals simply don’t sound very good. This is because all the intervals in
equal temperament (except the octave) deviate to some degree from their pure counterparts. For
example, equal-tempered major thirds are 14 cents sharp, and equal-tempered minor thirds are 16
cents sharp. Consequently, some even claim that equal temperament has ruined harmony, while
others are not pleased with the fact that equal temperament doesn’t allow for each key to have a
unique character, as they did in well temperament.

Notwithstanding this, equal temperament has been universally adopted across the
Western world, so much so that many pure intervals sound somewhat out of tune to the modern
ear. Although equal temperament is technically out of tune compared to just intonation, the
average listener does not notice this, because they have likely only ever heard music in equal
temperament. Similarly, the average musician has very little knowledge of any other tuning
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system besides equal temperament, as its predominance in the world, and its musical flexibility
gives them little reason to wonder if there may be a better way to approach the tuning of musical
instruments. It seems that with equal temperament, the West has completed its millennia long
quest to solve the problem of musical tuning. Indeed, the versatility of equal temperament will
likely assure its dominance in the future; however, it is a shame that this dominance leaves little
room for further experimentation in the field of tuning.

Part 5: Modern Use of Just Intonation:

Despite the predominance of 12-tone equal temperament in music of the 20th and 21st
centuries, the history of tuning certainly did not end with the widespread adoption of that
particular system by musicians and composers of the West. In fact, a small number of composers,
musicians, and music theorists have continued to experiment with the possibilities of musical
tuning. Although there are some who may believe that equal temperament should be replaced by
a new system of tuning, the majority of people who have investigated tuning in the time since the
adoption of equal temperament have not done so with the goal of designing such a system.
Rather, their exploration has been based on the premise of finding new and unique soundworlds,
and expressing musical ideas in an innovative way. This sentiment is especially exemplified by
composers who write music specifically with the goal of showcasing and considering the
possibilities of different tuning systems.

One such example is La Monte Young, an American composer born in 1935 who was one
of the first minimalist composers. His crowning compositional achievement is a work for retuned
piano called The Well-Tuned Piano: an incredible improvisatory composition first performed in
1974, that utilizes 7-limit just intonation tuning. Since its first performance, the length of 7The
Well-Tuned Piano has grown significantly, lasting over six hours in a version recorded in 1987.
Young’s tuning for the piece is quite unique, as it uses both the just perfect fifth, an interval with
a ratio of 3:2, and the harmonic seventh, an interval with a ratio of 7:4 (which is based on the
prime number 7, and therefore makes Young’s tuning a type of 7-limit just intonation), to derive
all 12 notes of the chromatic scale.

The various intervals to which this tuning system gives rise, such as the septimal minor
third and the septimal major third, are quite distinct and idiosyncratic, yet highly beautiful.
Indeed, none of the tuning systems previously discussed in this essay feature any of them.
Because of this, some of the harmonies used by Young sound quite otherworldly. However, they
are also incredibly exhilarating, and even heavenly to the open ear. In The Well-Tuned Piano, La
Monte Young has certainly found a very unique mode of musical expression, as well as a
marvelous soundworld.
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Piano [12-TET |Well-Tuned |Ben Johnston's |Interval

key |{cents) [Piano (cents) |notation name

Eb 0.00 0.00Eb Unison

EH 100.00 176 .65|F7T++ 567" harmonic
F 200.00 203.91|F+ Major tone

Fd 300.00 239.61|G77 b + 147" harmonic
G 400.00 470.78lAT b + 21% harmonic
G 500.00 443 52(ATT b ++ 1323 harmonic
A 600.00 674.69B7 b + 189" harmonic
Bb 700.00 701.96(B b Perfect fifth

BR 800.00 737 BS|CTT b + 49" harmonic

H g00.00 068.83/07 b Harmonic 7"
cH 1000.00 041 56|D77 b + 441 harmonic
D 1100.00 1M72.T4ET b + Inverse septimal comma
Eb 1200.00 1200.00(E b Octave

Peyer9, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons

Fig. 5.1: Table Comparing Cents Values for “The Well-Tuned Piano”, and Equal
Temperament, (note the very significant differences between the two tuning systems, and the very
unusual interval names).

Another example is Ben Johnston, an American composer who lived from 1926 to 2019.
Johnston is considered one of the most important composers of microtonal and just intonation
music in the 20th century, designing his own microtonal notation system, and writing many
works that thoroughly explored the massive possibilities of just intonation as a compositional
approach. Instead of solely using relatively simple forms of just intonation, such as the 5-limit
and 7-limit variants, Johnston sometimes employed 13-limit, 19-limit, and even 31-limit just
intonation tuning. Thus, many of his pieces divide the octave into much more than 12 tones. For
example, Johnston’s Sixth String Quartet requires 61 divisions of the octave.

This type of compositional approach produces many complex intervals that are
completely unknown to virtually all listeners, meaning that his music can sound somewhat
uncanny and alien. However, some of Johnston’s music is surprisingly accessible, such as his
Fourth String Quartet, which is based on the Christian hymn “Amazing Grace”. Overall,
Johnston’s work is united by a theme of fearless harmonic exploration, and of approaching
tuning as a compositional device akin to rhythm, melody, and dynamics. This makes his music
extremely interesting to listen to, yet exceedingly difficult to perform. Despite this, Johnston’s
music has not been ignored by performers, and many recordings of his works exist which
succeed in accurately conveying the intricacy of his approach to tuning.
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Fig. 5.2: Tone Row Used in Ben Johnston’s “String Quartet No.7”, (note the use of just
intonation intervals, and the presence of intervals constructed from prime factors 11 and 13).

The compositional outlooks of these two composers exemplify the manner in which
composers of the 20th and 21st centuries can utilize tuning to write unique and extraordinary
music that communicates equally unique and extraordinary ideas. Indeed, just as harmony,
melody, rhythm, timbre, articulation, and dynamics are all musical devices which composers are
expected to be able to manipulate in order to produce a desired compositional effect, it has been
shown that tuning may be similarly manipulated. Thus, tuning has begun to influence music
composition in a new way. The composer is no longer required to adhere to the default tuning of
their time, as it is in their power to select whatever system of tuning they want, based on how
they want their music to sound. In other words, the music will no longer serve the tuning; the
tuning will serve the music. One can only hope that in the future, composers, musicians,
listeners, and theorists will continue to experiment with new systems of tuning.

Conclusion:

The story of the evolution of tuning in Western music may have begun as a search for
perfection in an imperfect world, yet it soon evolved into a search for compromise based on
practical ideals. Since then, it has evolved once more into a search for creative possibilities.
Throughout each stage of its development, tuning has never been an isolated science, but an art
that has maintained an inseverable connection with music performance and composition. Though
other factors may have had a more obvious influence on the progressions of musical history,
music and tuning have consistently evolved side-by-side, directly impacting each other’s
transformation. Indeed, the specific characteristics of a given tuning system have always
influenced the compositional process, as these characteristics are themselves an element of the
music.
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For this reason, I wish that more music lovers had an understanding of the history of
tuning, as it would surely lead to a greater understanding of music in general. On a personal note,
I love learning about the complexities of various tuning systems, and tuning is a subject that has
consistently fascinated me. Though I greatly enjoy listening to music that doesn’t use 12-tone
equal temperament, I often have a hard time finding such music, because its abundance in the
musical world is quite limited. Therefore, I write this essay in the hopes that more music-lovers
will become fascinated with tuning, and that this will lead to the existence of a larger body of
music that ventures outside of equal temperament.
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